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Published studies on the applications of near-infrared reflectance spectroscopy (NIRS) to the analysis
of fiber in forages, feeds, grains, and cereal products indicate the presence of O-H absorbance, due
to sample moisture content, in the calibration models. The objective of this study was to determine
the extent to which residual moisture in samples interferes with the ability of NIRS to predict total
dietary fiber (TDF) in cereal products and grains. Milled cereal products and grains were stored in
20%, 60%, and 80% experimental relative humidity (rh) environments and a vacuum oven. Samples
(N ) 143) were analyzed for moisture and predicted for TDF. Results showed significant differences
between laboratory reference TDF and predicted TDF for samples that were either very low or very
high in moisture. Cereal products and grain samples stored under ambient conditions (N ) 90)
were combined with selected samples stored under different rh environments (N ) 53) to develop
a new calibration using partial least squares regression. The standard error of cross validation
and multiple coefficient of determination (R2) were 1.85% and 0.98, respectively. The model was
validated with an independent set of cereal products (N ) 29) stored under ambient and rh
environments. Samples stored under ambient and rh environments were predicted with standard
errors of performance of 1.70% and 1.86%, respectively. The study shows that NIRS can be used to
predict TDF in cereal products and grains with a wide range of residual moistures when calibrations
include the range of residual moisture expected.
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INTRODUCTION

Near-infrared reflectance spectroscopy (NIRS) has
been an invaluable tool for the analysis of fiber in
forages and feeds for many years (Murray, 1993). More
recently, NIRS has been reported to be an accurate
method for the determination of total dietary fiber (TDF)
in cereal products and grains (Kays et al., 1996) and in
oat bran products (Williams et al., 1991). In the
majority of these applications, O-H absorption due to
sample residual moisture content is present in the
calibration models. Baker (1985) reported the presence
of a moisture band (1936 nm) in a stepwise multiple
linear regression model to predict fiber in snack foods.
The influence of moisture was also apparent in the
development of a partial least squares (PLS) calibration
for soluble dietary fiber, neutral detergent fiber, and
TDF in oat bran products (Williams et al., 1991). Kays
et al. (1996) reported the presence of O-H absorbance
in PLS loadings for the three most important factors in
the TDF regression model. It was not known whether
the influence of O-H absorption was due to residual
moisture or carbohydrate.
Moisture in forages and cereal grains is present as a

“free” fraction and as one or more “bound” fractions
(Walter and Hope, 1971). Free moisture comprises most
of the moisture in a sample. Bound moisture is held
by a combination of van der Waals forces and H bonding
and is not easily removed or added (Windham et al.,
1987). Milled cereal products may equilibrate to dif-
ferent residual moisture contents, by a change in the
free moisture fraction, depending on handling, storage,

and laboratory temperature and humidity (Windham et
al., 1993). Moisture is detected in the first overtone and
combination wavelength absorption bands for O-H
groups at 1450 and 1930 nm (Hoffmann, 1963). Due to
the strong absorbance of moisture in the near-infrared
(NIR) spectrum, sample residual moisture content may
have a significant effect on prediction with NIRS. Fales
and Cummins (1982) reported significant differences
between laboratory and predicted acid detergent fiber
for forage samples that were stored under medium or
high relative humidities. The purpose of the present
study was to determine the extent to which residual
moisture present in samples stored under very dry and
humid conditions interferes with the ability of NIRS to
predict TDF in cereal products and grains.

MATERIALS AND METHODS

Cereal Samples and Sample Preparation, Reference
Laboratory Method for Total Dietary Fiber, and NIRS
Instrumentation. Cereal and grain products (n ) 119),
including breakfast cereals, crackers, brans, flours, and com-
mercial oat and wheat fibers (Kays et al., 1996), were assayed
chemically and spectroscopically. Samples were dry milled to
<500 µm in a cyclone mill (Cylotec 1093 Sample Mill, Perstorp
Analytical, Silver Spring, MD). Samples were assayed for total
dietary fiber by AOACmethod 991.43 (AOAC, 1990b, modified
by Kays et al., 1996). Dry milled cereal samples were scanned
with the NIRSystems 6500 monochromator (MIRSystems
Silver Spring, MD) as described by Kays et al. (1996) to obtain
reflectance spectra.
Relative Humidity Storage Conditions. Storage condi-

tions and procedures were as described by Windham et al.
(1993). The relative humidity (rh) in each storage cabinet was
controlled by saturated salt solutions. Potassium acetate,
sodium bromide, and ammonium sulfate solutions established
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the rh at 20%, 60%, and 80%, respectively (Greenspan, 1977).
Selected samples were stored in a vacuum oven at ambient
temperature with a 4 kPa laboratory vacuum as described by
Windham et al. (1987).
Cereal Samples. Calibration samples (N ) 90 minus 4

samples not available) of cereal and grain products, described
by Kays et al. (1996), were stored in experimental relative
humidity environments and vacuum oven (Figure 1). Twenty
samples were randomly selected and each sample stored in
each rh environment and the vacuum oven (N ) 80). The
remaining 66 samples, were randomly assigned to four groups.
One group was stored under ambient conditions in the
laboratory (N ) 15). The three remaining groups were stored
in the three experimental controlled rh environments (N )
17 in each rh environment).
NIRS Validation Samples. Validation samples (N ) 29)

of cereal and grain products, described by Kays et al. (1996),
were divided into four groups such that each group had a
similar TDF mean and standard deviation. The groups were
randomly assigned to the experimental rh environments or
the vacuum oven (Figure 1) and stored as previously described.
NIRS and Moisture Measurements. After storage and

equilibration, cereal samples and NIRS validation samples
were removed and scanned with a NIRSystems 6500 mono-
chromator (NIRSytems, Silver Spring, MD) as described by
Kays et al. (1996). Samples were analyzed for moisture by
drying in a forced air oven (AOAC, 1990a).
Multivariate Calibration. A commercial spectral analysis

program (NIRS3, Infrasoft International, Inc., Port Matilda,
PA) was used to process the data and develop chemometric
models. Using an algorithm called SELECT (Shenk and
Westerhaus, 1991a), selected samples (N ) 143 out of 146,
three samples were lost) from the rh environments and
vacuum oven were used to recalibrate the original TDF NIR
model to account for any effects of residual water. The
SELECT algorithm identifies samples within and outside the
neighborhoods which had previously been defined by the
original calibration data set of Kays et al. (1996). Twelve
principal component factors were used by SELECT and were
based on counting the number of eigenvalues greater than the
average eigenvalue divided by the square root of the number
of samples (Shenk and Westerhaus, 1991b). Using the scores
in 12-dimensional space, the neighborhood H Mahalanobis
distance was calculated among all spectral pairs in the original
TDF calibration data set and the rh and vacuum oven stored
samples. Any stored sample whose neighborhood H value was
less than 0.6 H (Shenk and Westerhaus, 1991b) from any
sample in the original calibration data set was eliminated. This
process was repeated with the remaining samples in the pool,
and so on, until every sample was in either the calibration
update (N ) 53) or the eliminated set (N ) 90). The samples
in the eliminated set were subsequently used to validate the
recalibrated TDF NIR model.
Calibration samples (N ) 90) of cereal products, described

by Kays et al. (1996), were combined with the selected
calibration update samples (N ) 53) for development of a new
TDF calibration model. The multivariate data technique
partial least squares regression (PLS1 and PLS2) was used
for calibrations (Martens and Naes, 1989). When only one

dependent variable is modeled (e.g., TDF alone), the PLS
algorithm is noniterative and is termed PLS1. When several
variables are modeled simultaneously (e.g., TDF and mois-
ture), the algorithm is iterative and called PLS2 (Martens and
Martens, 1986). Prior to the PLS procedure, log10(1/R) spectra
were mean centered, transformed with standard normal
variate and detrending procedures (Barnes et al., 1989), to
remove multiplicative interferences of scatter, and then trans-
formed with a second-derivative processing (gap ) 8 nm,
smoothing interval ) 4 nm) to enhance absorption peaks. The
transformations improved the standard error of calibration
compared to PLS analysis with untransformed data. A predic-
tive cross-validation method was used to determine the
optimum number of PLS factors and to guard against over-
fitting (Martens and Naes, 1989). One-fifth of the samples
were removed from calibration and used for prediction. This
was repeated five times, each time with a different fifth of the
samples removed. Performance statistics were accumulated
for each group of samples removed. The optimal number of
factors for the model was that which produced the first
minimum in error between modeled and reference values
(standard error of cross validation) for the samples removed
during cross validation.
The recalibrated TDF equation was first validated using the

samples not chosen by the SELECT algorithm (N ) 90), second
using the independent set of cereal samples (N ) 29) described
by Kays et al. (1996), and third using the independent set of
cereal samples after storage in the experimental rh environ-
ments and vacuum oven (N ) 29). Model performance was
reported as the coefficient of determination (r2), the standard
error of performance (SEP), and the average difference be-
tween reference method and modeled values (bias) (formulas
in Hruschka, 1987).

RESULTS AND DISCUSSION

Moisture contents of cereal products and grains stored
in different rh environments are shown in Table 1.
Across storage environments, the values for moisture
in the cereal samples ranged from 1.29% to 20.57%. This
is in agreement with Windham et al. (1993) for moisture
content of wheat across similar storage environments.
The calibration and validation samples with no special
humidity storage treatment had average moisture con-
tents of 9.05% and 8.20%, respectively. The moisture
content of calibration samples placed in the vacuum
oven and in the 20% rh environment decreased by 4.44%

Figure 1. Flowchart of the procedure for storing cereals and grain products in experimental relative humidity (rh) environments,
vacuum oven (VO), and ambient (AMB) laboratory conditions. N ) number of samples, * ) groups with the same samples.

Table 1. Mean and Standard Deviation (SD) of Moisture
Content (%) in Cereal Products and Grains Stored in
Different Relative Humidity (rh) Environments

calibration validation

treatment mean SD mean SD

ambient 9.05 2.04
vacuum oven 4.61 1.22 2.29 0.35
20% rh 5.44 2.50 6.62 0.50
60% rh 11.25 1.00 11.02 1.13
80% rh 15.26 1.92 15.10 1.13
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and 3.61% and validation samples decreased by 5.91%
and 1.58%, respectively. Conversely, in the 60% and
80% rh environments, moisture content of the calibra-
tion samples increased 2.20% and 6.21% and validation
samples increased by 2.82% and 6.90%, respectively.
When the original TDF NIR equation described by

Kays et al. (1996) was used to predict the samples after
storage in the five different rh environments (N ) 143),
the SEP and bias were 2.63% and -1.65% age units,
respectively. These performance statistics are higher
than reported by both Kays et al. (1996) and Williams
et al. (1991) for NIRS prediction of TDF in cereals,
grains, and oat bran products stored under ambient
conditions. In addition, 27% of the samples stored
under the rh regimes were spectrally extreme samples
(Mahalanobis distance > 3.0), indicating that overall
they were not represented by the calibration set derived
from samples stored under ambient conditions only.
Figure 2 shows the relationship between TDF residu-

als (AOAC-determined TDF - NIR-predicted TDF)
versus the descending moisture content of the samples
from the five different storage conditions (N ) 143).
Sorting the samples by moisture content revealed the
errors due to varying residual moisture content. The
curved distribution of the residuals and negative values
indicated that the samples stored in the 80% and 20%
rh and vacuum oven environments were overpredicted.
Samples with moisture concentrations of >12% had an
SEP and a bias of 3.43% and -2.63, respectively.
Samples with moisture concentrations of <6.0% had an
SEP and bias of 2.66% and -1.87, respectively,
The SELECT algorithm selected 53 samples to be

added to the calibration data set (N ) 90) described by
Kays et al. (1996). Moisture and TDF content were
modeled simultaneously (PLS2) to explore the relation-
ship between these variables and the NIRS measure-
ment. The PLS2 algorithm produces a set of factors
which relate to all the variables used in their derivation.
The resulting factors describe the variation in the NIR
data that are relevant for modeling the variations in
moisture and TDF. Cross-validated PLS2 revealed that
96% of the total variation in moisture and TDF could
be predicted by NIR using the first four factors. The
main variation (75%) was described by the first two
factors.

The PLS2 algorithm also creates scores, which rep-
resent the position of samples relative to the factors and
are the basis for regression models that predict compo-
sition. Scores are derived by taking, for each factor, the
sum across the spectrum of weights times centered
reflectance values. Sample scores from the PLS2 model
were divided into three groups corresponding to high
(>20%), intermediate (9%-20%), and low (<9%) TDF
content. The three groups were further subdivided into
high (>12%), intermediate (5-12%), and low (<5%)
moisture content. The scores for these groups of samples
are shown in Figure 3. Scores from the first PLS2 factor
separated the samples into high, intermediate, and low
moisture categories regardless of fiber level (Figure 3,
panels A, B, and C). High- and intermediate-moisture
samples had negative scores in intermediate- and low-
fiber groups, whereas low-moisture samples had positive
scores (Figure 3, panels B and C). Intermediate-
moisture samples also had positive scores for high-fiber
samples (Figure 3, panel A). Factor 2 scores separated
the samples into high-, intermediate-, and low-TDF
levels. High-fiber samples had higher positive scores
than intermediate-fiber samples, whereas low-fiber
samples generally had negative scores. Scores from the
first two PLS2 factors were correlated (by Pearsons
correlation coefficients) to both constituents (e.g., TDF
andmoisture). The first factor had a positive correlation
of 0.72 with TDF but a negative correlation of -0.50

Figure 2. Total dietary fiber residuals (AOAC-determined
TDF - NIRS-predicted TDF) versus descending moisture
content for cereal products (N ) 143) stored in different
relative humidity environments. TDF was predicted using the
equation developed by Kays et al. (1996) with samples stored
at ambient conditions.

Figure 3. Two vector PLS2 score plots of the regression
between NIRS spectra and TDF and moisture of (A) high fiber,
>20%; (B) intermediate fiber, 9%-20%; and (C) low fiber, <9%.
Labels for moisture content are denoted as follows: b, high
moisture, >12%; 3, intermediate moisture, 5-12%; 1, low
moisture, <5%.
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with moisture. The negative correlation indicates that
factor 1 scores decreased as moisture content increased
(Figure 3). Scores from the second factor had a positive
correlation with oven moisture (r ) 0.79) and TDF (r )
0.48). These results suggest that prediction of either
constituent was based on information relating to both
constituents and that residual moisture can be modeled
by NIRS and hence eliminated as an interfering sub-
stance.
A separate PLS1 NIRS calibration equation was

obtained for TDF in cereal products varying in residual
moisture content. The standard error of cross validation
(SECV), using five cross-validation groups, was 1.85%,
with a multiple coefficient of determination (R2) of 0.98.
The SECV is slightly larger than that reported by Kays
et al. (1996) (SECV of 1.58%) for a TDF calibration
derived from cereal products stored under ambient
conditions with a mean moisture content and standard
deviation of 7.80% and 2.50%, respectively. The equa-
tion contained seven factors, with scores from factors
1, 2, and 3 having correlations of 0.77, 0.43, and 0.39,
respectively, with TDF. The seven factors explained
98.4% of the spectral variation and 98.3% of the total
variation in TDF data.
The PLS1 regression coefficients (loadings) for factors

1 and 2 as a function of wavelength for TDF are shown
in Figure 4, panels A and B, respectively. Plots of

loadings often resemble the spectra of samples and the
spectra of constituents and thus offer scope for inter-
pretation of maximum weighting matching known ab-
sorbance bands. The shape of the plot for the first factor
(Figure 4A) showed effects relating to moisture at 1416
and 1932 nm (Cowe and McNicol, 1985); oil at 1722,
1764, 2304, and 2346 nm (Williams and Norris, 1987);
and carbohydrate at 2286 and 2322 nm (Kays et al.,
1996). The first factor had a correlation of 0.77 with
TDF and a smaller negative correlation with oven
moisture (r ) -0.36). The low correlation with moisture
is surprising, as the effect of the absorbance of water
can be detected at 1416 and 1932 nm (Figure 4A). The
low and negative correlation with oven moisture would
indicate that the moisture detected in this factor must
be tightly bound to other constituents and is not
released during oven drying (Cowe and McNicol, 1985).
The second factor had a correlation of only 0.43 with

TDF, but a high positive correlation of 0.82 with
moisture. The presence of O-H absorbance due to
moisture (Figure 4B, 1410 and 1920 nm) and the high
positive correlation to oven moisture content suggests
that the second factor is dependent upon the variation
in residual moisture concentration. Loading 2 also had
regression coefficients related to C-H absorption in
carbohydrate at 2268 and 2346 nm and CdO absorption
in protein at 2052 nm (Williams and Norris, 1987).
Scores from factor 3 had a correlation of 0.39 with TDF
and -0.18 with oven moisture and a loading plot similar
to that described by Kays et al. (1996).
Equation Validation. The PLS1 TDF calibration

was first validated on the samples not chosen by the
SELECT algorithm (N ) 90). Samples were predicted
with an SEP of 1.47% and a bias of 0.14% age units.
Linear regression of AOAC-determined TDF against
NIR-predicted TDF (Y ) -0.15 +1.02X) gave an inter-
cept and slope not significantly different from 0.0 and
1.0, respectively (p > 0.05). The relationship between
TDF residuals versus the descending moisture content
of the validation samples is shown in Figure 5. The
residuals are evenly distributed and do not exhibit a
curved distribution. Samples stored in very dry (vacuum
oven and 20% rh) and very humid (80% rh) conditions
had SEPs of 1.37% and 1.71%, respectively. The

Figure 4. PLS1 regression coefficients (loadings) for factors
1 (A) and 2 (B) as a function of wavelength for TDF.

Figure 5. Total dietary fiber residuals (AOAC-determined
TDF - NIRS-predicted TDF) versus descending moisture
content for the validation set (N ) 90) of cereal products stored
in different relative humidity environments. TDF was pre-
dicted using the PLS1 equation developed with samples from
the original equation (Kays et al., 1996) plus samples stored
under different relative humidity environments.
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original equation reported by Kays et al. (1996) resulted
in an overall less accurate prediction of rh treated and
vacuum oven samples with an SEP and bias of 2.31%
and -1.45, respectively.
The TDF models (e.g., original and recalibrated) were

validated using the independent validation samples
described by Kays et al. (1996) and the independent
validation samples after storage in controlled relative
humidity environments and the vacuum oven. Predic-
tion of the independent validation samples described by
Kays et al. (1996) with the recalibrated model produced
a SEP and bias of 1.70% and -0.45%, respectively. The
SEP and bias were similar to those reported by Kays et
al. (1996) (SEP ) 1.51% and bias ) -0.38). These data
indicate that the calibration population can be expanded
to include samples which vary in residual water con-
centration with only a slight loss in prediction accuracy.
The original TDFmodel resulted in a high SEP and bias
of 4.75% and -3.78, respectively (Table 2), when pre-
dicting the rh treated and vacuum oven samples. The
negative bias was a result of higher predicted TDF
values from samples stored in very dry (vacuum oven
and 20% rh) and very humid (80% rh) conditions.
Samples with moisture concentrations of >12% had a
mean bias of -3.93% age units vs a -6.39% age unit
bias for samples with moisture concentrations of <5.0%.
Upon prediction with the recalibrated model, a small
negative bias (-0.29) and an SEP of 1.86% were found
(Table 2.).

CONCLUSIONS

A TDF prediction model, developed using near-
infrared reflectance spectroscopy of cereal products
varying in residual moisture, can be used to measure
TDF in samples with a wide range of residual moisture.
Though slightly less accurate than an NIRS TDF model
based on a narrower range of residual moisture, the
model based on a wide range of residual moisture was
sufficiently accurate to provide an acceptable method
for fiber analysis. Additionally, PLS1 factors produced
O-H absorbance that was dependent on the variation
in residual moisture concentration. Factors for TDF
from PLS1 produced scores which were correlated to
both TDF and moisture, indicating that prediction of
TDF was based on information related to both constitu-
ents.
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Table 2. Validation Statistics for NIRS Prediction of
TDF in Cereal Products Stored in Different Relative
Humidity (rh) Environments: Mean, Standard Deviation
(SD), Bias, Standard Error of Performance (SEP), and
Coefficient of Determination (r2)

mean SD

model AOAC NIRS AOAC NIRS bias SEP r2

originala 15.54 19.32 12.54 10.96 -3.78 4.75 0.96
recalibratedb 15.54 15.83 12.54 11.36 -0.29 1.86 0.99

a Original equation developed from samples at ambient rh.
b Recalibrated equation developed from the original calibration
samples plus samples stored in different rh environments.
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